Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
24 сентября 2019 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
 


Поверхности, на которых можно провести две окружности через каждую точку

М. Б. Скопенковab

a Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва
b Национальный исследовательский университет "Высшая школа экономики", г. Москва

Количество просмотров:
Эта страница:63

Аннотация: Доклад основан на совместных работах с Р.Красаускасом и А.Пахаревым.
Мы находим все поверхности в трехмерном евклидовом пространстве, через каждую точку которых проходят две трансверсальные дуги окружностей, лежащие на поверхности. Это задача, которая просто обязана быть решена математиками, так она имеет естественную формулировку и очевидные приложения в архитектуре.
Однако долгое время она оставалась открытой, несмотря на частичные продвижения, начиная ещё с работ Дарбу 19го века. Предлагаемое решение основано на сведении к красивой алгебраической задаче описания пифагоровых n-ок многочленов, которая решается с помощью нового метода разложения кватернионных многочленов на множители.
Мы также собираемся обсудить совсем недавние результаты в этом направлении: многомерные обобщения Я.Коллара и Н.Луббеса, и решение аналогичной задачи в изотропной геометрии Е.Морозовым.
Значительная часть доклада элементарна и доступна студентам и школьникам. Многие примеры иллюстрируются мультфильмами. Будет сформулировано несколько нерешенных проблем.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021