RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
29 октября 2019 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
 


Нижние оценки на степень разветвленных накрытий многообразий: gt_n-формула

Д. В. Гугнин

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:29

Аннотация: Теория разветвленных накрытий многообразий размерности большей 2 началась с знаменитой теоремы Александера (1920): для любого замкнутого ориентируемого PL многообразия $X^N$ существует его кусочно-линейное разветвленное накрытие над сферой $S^N$.
По определению, топологическое (конечнолистное) разветвленное накрытие $f\colon X^N \to Y^N$ — это непрерывное открыто-замкнутое конечнократное отображение связных топологических многообразий без края. Замечательная теорема Чернавского (1964) утверждает, что (A) любое разветвленное накрытие $f\colon X^N \to Y^N$ является глобально конечнократным, т.е. существует $n = \max_{y\in Y}|f^{-1}(y)|$, (B) множество ветвления $\Sigma_f\subset X$ (точки не локального гомеоморфизма) есть замкнутое подмножество коразмерности большей или равной 2, и (С) ограничение ${f|}_{\ldots}\colon X-f^{-1}(f(\Sigma_f)) \to Y-f(\Sigma_f)$ есть настоящее $n$-листное накрытие.
Легко проверить, что для случая замкнутых связных ориентированных многообразий $\deg(f) =\pm n$ (далее мы будем рассматривать только этот случай). Обращая ориентацию, если это нужно, мы можем добиться $\deg f=n$. Таким образом, любое разветвленное накрытие есть доминирование многообразий (по Громову), т.е. отображение ненулевой степени.
Для любого доминирования $f\colon X^N \to Y^N$ отображение рациональных когомологий $f^*$ есть мономорфизм (простое следствие рациональной двойственности Пуанкаре). Возникает естественный вопрос (А): если дано доминирование $f\colon X^N \to Y^N$, можно ли его прогомотопировать в разветвленное накрытие (естественно, той же степени). Можно задать близкий вопрос (B): если существует доминирование $f\colon X^N \to Y^N$ данной степени $n$, существует ли разветвленное накрытие $g\colon X^N \to Y^N$ той же степени $n$.
До недавних пор, на вопрос (B), в случае односвязной базы $Y^N$, было известно только следующее: Если существует разветвленное накрытие $g\colon X^N \to Y^N$ степени $n$, то $n\ge L(X)/L(Y)$ (оценка Берстейна-Эдмондса, 1978). Здесь через $L(Z)$ обозначена рациональная когомологическая длина пространства $Z$, т.е. максимальное число однородных классов рациональных когомологий положительной размерности, имеющих ненулевое произведение.
В 2018 году докладчиком была получена так называемая $gt_n$-формула, которая для любого разветвленного накрытия $g\colon X^N \to Y^N$ степени $n$ всегда дает или оценку Берстейна-Эдмондса, или, во множестве случаев, строго больше, но не более $n\ge L(X)$.
Доказательство $gt_n$-формулы опирается на возникшую сравнительно недавно в работах Бухштабера-Риса (1996-97, 2004, 2008) и докладчика (2011) алгебраическую теорию $n$-гомоморфизмов Фробениуса.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019