RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по арифметической геометрии
9 декабря 2019 г. 17:00–19:00, г. Москва, Лаборатория зеркальной симметрии НИУ ВШЭ, ул. Усачёва, д. 6, ауд. 306
 


Соответствие Маккея. Теорема Сайта-Ходжа.

В. А. Вологодский

Национальный исследовательский университет "Высшая школа экономики", г. Москва

Количество просмотров:
Эта страница:49

Аннотация: Доклад будет посвящен двум сюжетам.
  • Я расскажу про применение, придуманное Безрукавниковым и Калединым, квантований в характеристике $р$ к построению эквивалентности Маккея. Основная теорема гласит, что любой конечной подгруппы $G$ в $Sp(V)$ (где $V$ — векторное пространство над полем комплексных чисел с симплектической формой) и симплектического разрешения особенностей $X \to V/G$, производная категория $G$-эквивариантных когерентных пучков на $V$ эквивалентна производной категории когерентных пучков на $X$.
  • Сайто придумал обобщение теоремы о вырождении спектральной последовательности Ходжа для гладких проективных семейств $f: X \to Y$ на случай произвольных проективных морфизмов (т.е. когда слои могут быть особыми). Я расскажу про это обобщение, некоторые следствия из него и про то, что удается доказать в характеристике $р$.


ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020