Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Геометрическая теория оптимального управления
13 мая 2020 г. 16:45–18:15, г. Москва, Семинар будет проходить онлайн, в skype. Для того, чтобы послушать семинар, напишите на аккаунт "Геометрическое управление" минут за 5-10 до начала доклада.
 


Сопряженные точки в обобщенной задаче Дидоны

Ю. Л. Сачков

Институт программных систем им. А. К. Айламазяна РАН

Количество просмотров:
Эта страница:54

Аннотация: Рассматривается следующее обобщение классической задачи Дидоны. На плоскости даны две точки $a_0$, $a_1$, соединяющая их кривая $\gamma_0$, число $S$ и точка $c$. Требуется найти кратчайшую кривую $\gamma$, соединяющую $a_0$ и $a_1$, такую, что область, ограниченная кривыми $\gamma$ и $\gamma_0$, имеет площадь $S$ и центр масс $c$. Задача формализуется как задача оптимального управления в 5-мерном пространстве, линейная по 2-мерному управлению, с квадратичным интегральным функционалом (субриманова задача на группе Картана).
В предыдущих работах была построена группа симметрий задачи, и описаны соответствующие времена Максвелла — первые времена, когда пересекаются симметричные геодезические. Известно, что после времени Максвелла геодезические не являются глобально оптимальными.
В докладе будет представлен результат о локальной оптимальности геодезических: первое сопряженное время вдоль геодезических не меньше времени Максвелла, соответствующего группе симметрий.

Website: http://opu.math.msu.su/node/584

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021