RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Когомологические аспекты геометрии дифференциальных уравнений
18 мая 2020 г. 15:00, г. Москва, онлайн
 


Using the KdV conserved quantities in problems of splitting of initial data and reflection / refraction of solitons in varying dissipation and/or dispersion media

А. В. Самохин
Видеозаписи:
MP4 139.8 Mb
Материалы:
Adobe PDF 1.5 Mb

Количество просмотров:
Эта страница:105
Видеофайлы:15
Материалы:4

A. V. Samokhin


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: An arbitrary compact-support initial datum for the Korteweg-de Vries equation asymptotically splits into solitons and a radiation tail, moving in opposite direction. We give a simple method to predict the number and amplitudes of resulting solitons and some integral characteristics of the tail using only conservation laws.
A similar technique allows to predict details of the behavior of a soliton which, while moving in non-dissipative and dispersion-constant medium encounters a finite-width barrier with varying dissipation and/or dispersion; beyond the layer dispersion is constant (but not necessarily of the same value) and dissipation is null. The process is described with a special type generalized KdV-Burgers equation $u_t=(u^2+f(x)u_{xx})_x$.
The transmitted wave either retains the form of a soliton (though of different parameters) or scatters a into a number of them. And a reflection wave may be negligible or absent. This models a situation similar to a light passing from a humid air to a dry one through the vapor saturation/condensation area. Some rough estimations for a prediction of an output are given using the relative decay of the KdV conserved quantities; in particular a formula for a number of solitons in the transmitted signal is given.

Материалы: zoom_lab_6_samokhin.pdf (1.5 Mb)

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020