RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар отдела математической логики «Теория доказательств»
18 мая 2020 г. 18:30, г. Москва, online
 


Fusible numbers and Peano Arithmetic

Gabriel Nivasch
Видеозаписи:
MP4 1,294.5 Mb
MP4 826.3 Mb

Количество просмотров:
Эта страница:82
Видеофайлы:4
Youtube Video:

Gabriel Nivasch


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Inspired by a mathematical riddle involving fuses, we define a set of rational numbers which we call "fusible numbers". We prove that the set of fusible numbers is well-ordered in $\mathbb{R}$, with order type $\varepsilon_0$. We prove that the density of the fusible numbers along the real line grows at an incredibly fast rate, namely at least like the function $F_{\varepsilon_0}$ of the fast-growing hierarchy. Finally, we derive some true statements that can be formulated but not proven in Peano Arithmetic, of a different flavor than previously known such statements, for example, "For every natural number $n$ there exists a smallest fusible number larger than $n$."

Язык доклада: английский

* Join the Zoom meeting 18.05.2020 18:30 MSK (GMT +3): https://zoom.us/j/887484923

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020