RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
21 мая 2020 г. 16:00, г. Москва, online
 


Интегрируемы ли уравнения глубокой воды со свободной поверхностью?

В. Е. Захаровabc

a Физический институт им. П. Н. Лебедева Российской академии наук, г. Москва
b University of Arizona
c Сколковский институт науки и технологий
Видеозаписи:
MP4 952.2 Mb

Количество просмотров:
Эта страница:375
Видеофайлы:99
Youtube Video:

В. Е. Захаров


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Мы показываем, что уравнения Эйлера, описывающие нестационарное потенциальное течение двумерной глубокой жидкости со свободной поверхностью при отсутствии гравитации и поверхностного натяжения, могут быть точно проинтегрированы при специальном выборе граничных условий на бесконечности, когда жидкость сжимается по автомодельному закону. Вопрос о точной интегрируемости жидкости с естественными граничными условиями на бесконечности остаётся пока открытым, хотя есть сильные аргументы, как аналитические так и полученные в результате численных экспериментов, в пользу этой гипотезы. Самый сильный из них – существование неопределенного (зависящего от выбора начальных условий) числа дополнительных интегралов движения, коммутирующих друг с другом. Другим значительным аргументом является точное сокращение коэффициента нетривиальных четырехволновых взаимодействий. Это сокращение объясняет сильное замедление процесса стохастизации, наблюдавшееся в численных экспериментах еще семидесятых годов прошлого века. Более современные эксперименты показывают аномально долгое существование солитона огибающих (брезера), который в неинтегрируемом случае быстро разрушается. Доказательство интегрируемости уравнений «глубокой воды» было бы открытием совершенно нового класса интегрируемых систем, отличного от уже известных науке.

Website: https://us02web.zoom.us/j/5056829814?pwd=NzFiWUxpYXZ6bEJONTBXTy9SZWRSdz09

* Идентификатор конференции: 505 682 9814 Пароль: 248481

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020