RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Динамические системы и математическая физика
27 мая 2020 г. 14:00, г. Москва, online
 


When does the (Marked) Length Spectrum determine geometry of the billiard table?

V. Yu. Kaloshin

University of Maryland
Видеозаписи:
MP4 117.8 Mb

Количество просмотров:
Эта страница:59
Видеофайлы:4


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: We study the billiard on the plane ask: does the (Marked) Length Spectrum, i.e., the set of lengths of periodic orbits (together with their labeling), determine the geometry of the billiard table? This question is closely related to the well-known question: "Can you hear the shape of a drum?" We report two results for planar domains having certain symmetry and analytic boundary. First, we consider billiards obtained by removing from the plane three strictly convex analytic obstacles satisfying the non-eclipse condition and a suitable symmetry. We show that under a non-degeneracy assumption, the Marked Length Spectrum determines the geometry of the billiard table. This is a joint work with J. De Simoi and M. Leguil. Second, we consider billiards inside of a strictly convex planar domain having certain symmetry. We show that under a non-degeneracy assumptions, the Length Spectrum determines the geometry of the billiard table. This is a joint work with M. Leguil and K. Zhang. These results are analogous to results of Colin de Verdière, Zelditch and Iantchenko-Sjöstrand-Zworski in terms of the (Marked) Length Spectrum.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020