Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Алгебраическая топология и её приложения. Семинар им. М. М. Постникова
26 мая 2020 г. 16:45–18:20, г. Москва, ГЗ МГУ, ауд. 16-08, вторник, 16:45–18:20
 


B-жёсткость идеальных почти погореловских многогранников

Н. Ю. Ероховец

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:43

Аннотация: В торической топологии каждому $n$-мерному комбинаторному простому многограннику $P$ с $m$ гипергранями сопоставляется $(m+n)$-мерное момент-угол многообразие $Z_P$ с действием компактного тора $T^m$, таким что пространство орбит $Z_P/T^m$ является геометрической реализацией многогранника $P$. Простой $n$-мерный многогранник $P$ называется B-жёстким, если любой изоморфизм градуированных колец $H^*(Z_P,\mathbb{Z}) = H^*(Z_Q,\mathbb{Z})$ для простого $n$-мерного многогранника $Q$ влечёт комбинаторную эквивалентность $P=Q$.
Идеальный почти погореловский многогранник – это комбинаторный трёхмерный простой многогранник, который получается срезкой всех бесконечно удалённых вершин идеального многогранника с прямыми двугранными углами в пространстве Лобачевского $L^3$. Такие многогранники – это в точности многогранники, которые получаются из любого, не обязательно простого, трёхмерного многогранника срезкой всех его вершин и всех рёбер нового многогранника, оставшихся от "старых" рёбер. Граница двойственного многогранника является барицентрическим подразбиением границы старого многогранника (а также двойственного к нему).
Мы доказываем, что любой идеальный почти погореловский многогранник является B-жёстким. Этот результат даёт три когомологически жёсткие семейства многообразий над почти погореловскими многогранниками: момент-угол многообразия, канонические 6-мерные квазиторические многообразия и канонические 3-мерные малые накрытия, возникающие "из линейной модели" в терминологии Дэвиса-Янушкевича. Малые накрытия имеют интересную геометрическую структуру – вне конечного набора плоских торов (отвечающих вершинам) они имеют структуру гиперболического многообразия.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021