Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Современные проблемы теории чисел
28 мая 2020 г. 12:45, г. Москва, ZOOM
 


О произведениях в аддитивно богатых множествах

И. Д. Шкредов

Математический институт им. В.А. Стеклова Российской академии наук, г. Москва

Количество просмотров:
Эта страница:70

Аннотация: Классический метод Бёрджеса из аналитической теории чисел построен на том, что такое аддитивно богатое множество, как отрезок, содержит большие произведения двух множеств. Мы, во-первых, показываем, что подобная ситуация имеет место для любых множеств с малым удвоением, а именно, если $|A+A| \le K|A|$, то $2A-2A$ всегда содержит произведение отрезка и некоторого достаточно большого множества. Во-вторых, мы приложим наш результат к оценкам триг. сумм по мультипликативным характерам, а также продемонстрируем, как, в соединении c Uniformity Conjecture (частный случай гипотезы Бомбьери-Лэнга), произведения в аддитивно богатых множествах позволяют сказать нечто новое о старых комбинаторных задачах с квадратами. Идентификатор конференции: 899 3346 8763 Пароль: 982816

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021