RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар по геометрической топологии
25 сентября 2020 г. 17:00–20:00, г. Москва, место встречи уточняется
 


Представление Гасснера для струнных зацеплений и полином Александера

Д. Зайцев

Количество просмотров:
Эта страница:49

Аннотация: Мы разберём построенное ле Диме обобщённое представление Гасснера, сопоставляющее $n$-компонентному струнному зацеплению $L$ некоторый элемент $\gamma(L)$ группы $GL_n(F)$, где $F$ — поле рациональных функций от $n$ переменных. Будут рассказаны явная конструкция $\gamma$ и простейшие примеры его вычисления. Известно, что $\gamma(L)$ содержит ту же информацию, что и $\mu$-инварианты $L$; в частности $\gamma$ инвариантно при конкордантности и при необъемлемой изотопии.
Также мы обсудим связь $\gamma$ с полиномом Александера от $n$ переменных, найденную Кирком, Ливингстоном и Ваном. А именно, полином Александера $n$-компонентного зацепления $\hat L$, полученного замыканием струнного зацепления $L$, раскладывается в произведение полинома Александера (=кручения Райдемайстера) самого $L$ и некоторой функции от $\gamma(L)$.
Доклад основан на параграфах 4 и 6 из статьи Кирка–Ливингстона–Вана (arXiv:math.GT/9806035).

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020