Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Beijing–Moscow Mathematics Colloquium
6 ноября 2020 г. 11:00–12:00, г. Москва, online
 


Spectrum rigidity and integrability for Anosov diffeomorphisms

Y. Shi
Видеозаписи:
MP4 246.5 Mb

Количество просмотров:
Эта страница:50
Видеофайлы:1


Видео не загружается в Ваш браузер:
  1. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  2. Сообщите администратору портала о данной ошибке

Аннотация: Let $f$ be a partially hyperbolic derived-from-Anosov diffeomorphism on 3-torus $\mathbb{T}^3$. We show that the stable and unstable bundle of $f$ is jointly integrable if and only if $f$ is Anosov and admits spectrum rigidity in the center bundle. This proves the Ergodic Conjecture on $\mathbb{T}^3$.
In higher dimensions, let $A\inSL(n,\mathbb{Z})$ be an irreducible hyperbolic matrix admitting complex simple spectrum with different moduli, then $A$ induces a diffeomorphism on $\mathbb{T}^n$. We will also discuss the equivalence of integrability and spectrum rigidity for $f\inDiff^2(\mathbb{T}^n)$ which is $C^1$-close to $A$.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021