Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Математический коллоквиум МГТУ
26 ноября 2020 г. 17:30, г. Москва, Zoom video-meeting
 


A polynomial invariant of trivalent graphs that is related to the Jones polynomial of knots

Scott Baldridge

Louisiana State University

Количество просмотров:
Эта страница:24

Аннотация: Tutte discovered a polynomial derived from graphs that gives valuable information about the graph. In this talk, I will describe a simple-to-compute polynomial invariant of a trivalent graph with a perfect matching (think: the formula for computing the Tutte polynomial or the Kauffman bracket of a link). This polynomial invariant, called the 2-factor polynomial, counts the number of 2-factors of the graph that contain the perfect matching edges. We will calculate some examples and show some implications of these counts. In particular, we will explain how this polynomial is related to the Jones polynomial and how it can be generalized to compute all of the 3-edge colorings of a trivalent graph.

Zoom-conference identificator: 948 341 6153; Password: 2SXtEz

Язык доклада: английский

Website: https://us02web.zoom.us/j/9483416153?pwd=NzJmdk5pZjdiMXdoMUFoakNzNFhLQT09

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021