Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Математический коллоквиум МГТУ
17 декабря 2020 г. 17:30, г. Москва, Zoom video-meeting
 


On triangulations of polyhedra, monotone sequences of flips, and decompisitions of 3d embedded prismatoids

Hang Si

Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Количество просмотров:
Эта страница:40

Аннотация: A fundamental fact exploited in computational geometry is that one can actually flip between regular triangulations monotonically, in a generalization of what happens for Lawson’s result in the planar Delaunay triangulation. However, the same is not true for non-regular triangulations, in dimensions three and higher. Many of the differences come from the following: Every non-convex polygon in the plane can be triangulated without extra vertices. In contrast, in dimension three (or higher) there are non-triangulable non-convex polytopes, such as the Schoenhardt polyhedron (a twised non-convex prism).

In this talk, we will exploit a nice geometric relation between monotone sequences of flips and triangulations of polyhedra. It explains why Lawson's flip algorithm works and why it may fail in higher dimensions. We then focus on a decomposiotn problem of a class of simple polyhedra – 3d embedded prismatoids. I will show a basic geometric fact on whetehr a decompsotion exists or not. Finally, I will show some related topics to this fact.

Zoom-conference identificator: 948 341 6153; Password: 2SXtEz

Язык доклада: английский

Website: https://us02web.zoom.us/j/9483416153?pwd=NzJmdk5pZjdiMXdoMUFoakNzNFhLQT09

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021