RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Петербургский геометрический семинар им. А. Д. Александрова
1 марта 2021 г. 17:00–19:00, г. Санкт-Петербург, Доклад состоится онлайн при помощи ZOOM. Ссылку можно получить, написав по адресу geom.spb@yandex.ru
 


Задача Александрова и метод Погорелова для гиперболических многообразий малой размерности

А. Л. Вернер, Л. А. Антипова

Российский государственный педагогический университет им. А. И. Герцена, факультет математики

Количество просмотров:
Эта страница:17

Аннотация: Задачи о восстановлении полных выпуклых многогранников по кривизнам их вершин на заданных лучах в пространстве Евклида А.Д.Александров решал в главе IX своей монографии «Выпуклые многогранники» (изд.1950), применяя лемму об отображении, требующей предварительного доказательства теоремы единственности.
Экстремальный метод А.В.Погорелова для доказательства теорем существования не требует предварительного доказательства теорем единственности.
Многогранники, рассмотренные А.Д.Александровым и А.В.Погореловым имеют самую простую топологию – они гомеоморфны либо сфере, либо плоскости. В докладе речь пойдёт о восстановлении замкнутых выпуклых ломаных на гиперболических трубках по кривизнам (поворотам) их вершин и о восстановлении выпуклых многогранников ненулевого рода по кривизнам их вершин на данных лучах в трёхмерном гиперболическом многообразии.
Кроме того, будет рассказано об истории работ по этой тематике и об их связи с теорией эллиптических уравнений Монжа – Ампера.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021