RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
22 февраля 2021 г. 18:30, г. Москва, Join Zoom Meeting ID: 818 6674 5751 Passcode: 141592
 


Quaternionic conjugation spaces

F. Yu. Popelenskii

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Количество просмотров:
Эта страница:17

Аннотация: There is a considerable amount of examples of spaces $X$ equipped with an involution $\tau$ such that the mod 2–cohomology rings $H^{2*}(X)$ and $H^*(X^\tau)$ are isomorphic. Hausmann, Holm, and Puppe have shown that such an isomorphism is a part of a certain structure on equivariant cohomology of $X$ and $X^\tau$, which is called an $H$-frame. The simplest examples are complex Grassmannians and flag manifolds with complex conjugation. We develop a similar notion of $Q$-frame which appears in the situation when a space $X$ is equipped with two commuting involutions $\tau_1,\tau_2$ and the mod 2-cohomology rings $H^{4*}(X)$ and $H^*(X^{\tau_1,\tau_2})$ are isomorphic. Motivating examples are quaternionic Grassmannians and quaternionic flag manifolds equipped with two complex involutions. We show naturality and uniqueness of $Q$-framing. We prove that $Q$-framing can be defined for direct limits, products, etc. of $Q$-framed spaces. This list of operations contains glueing a disk in $\HH^n$ with complex involutions $\tau_1$ and $\tau_2$ to a $Q$-framed space by an equivariant map of boundary sphere.
An important part of $H$-frame structure in paper by H.–H.–P. was so called conjugation equation. Franz and Puppe calculated the coefficients of the conjugation equation in terms of the Steenrod squares. As a part of a $Q$-framing we introduce corresponding structure equation and express its coefficients by explicit formula in terms of the Steenrod operations.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021