RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
22 марта 2021 г. 18:30, г. Москва, Join Zoom Meeting ID: 818 6674 5751 Passcode: 141592
 


Surface knot theory and related groups

Mahender Singh

Количество просмотров:
Эта страница:30

Аннотация: Study of certain isotopy classes of a finite collection of immersed circles without triple or higher intersections on closed oriented surfaces can be thought of as a planar analogue of virtual knot theory where the genus zero case corresponds to classical knot theory. It is intriguing to know which class of groups serves the purpose that Artin braid groups serve in classical knot theory. Mikhail Khovanov proved that twin groups, a class of right angled Coxeter groups with only far commutativity relations, do the job for genus zero case. A recent work shows that an appropriate class of groups called virtual twin groups fits into the theory for higher genus cases. The talk would give an overview of some recent developments along these lines.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021