Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Семинар по многомерному комплексному анализу (Семинар Витушкина)
14 апреля 2021 г. 16:45, г. Москва, online
 


On homogeneous $k$-nondegenerate CR manifolds

Andrea Santi

UiT The Arctic University of Norway
Материалы:
Adobe PDF 1.7 Mb

Количество просмотров:
Эта страница:60
Материалы:1

Аннотация: In this talk, I will report on a method for building homogeneous manifolds with an invariant $k$-nondegenerate CR structure of hypersurface type. I will explain how to combine the Tanaka and Freeman filtrations of a CR manifold $(M,\mathcal D,\mathcal J)$ into a single filtration and construct an associated pointwise invariant $\mathfrak m_x=\mathfrak m_x^{-2}\oplus\mathfrak m_x^{-1}\oplus\mathfrak m_{x}^0\oplus\cdots\oplus\mathfrak m_x^{k-2}$, called the core at the point $x\in M$. The collection of all Levi forms $\mathcal L^{p+1}$ of higher degree induces operators $L^{p+1}$ on $\mathfrak m_x$ but, in sharp contrast with the nondegenerate case, the core does not possess any natural structure of a Lie algebra and the problem of constructing homogeneous $M=G/H$ with a given core is more involved.
The method is a generalization of Tanaka's construction of homogeneous models via prolongation of negatively-graded Lie algebras. We will recognize the $L^{p+1}$'s as defining components of Weisfeiler infinite-dimensional contact algebra $\mathfrak c$ and endow $\mathfrak c$ with a natural structure of a CR algebra. The germ of $M=G/H$ is then obtained as an appropriate CR subalgebra $\mathfrak g$ of $\mathfrak c$ that prolongs $\mathfrak m_x$. In the second part of the talk, I will consider applications in dimension $\dim M=7$. I will present the classification of the $2$-nondegenerate cores up to isomorphism and obtain seven not locally CR diffeomorphic homogeneous CR manifolds with given cores. Finally, there exists a $7$-dimensional $M=G/H$ corresponding to the unique $3$-nondegenerate core.

Материалы: andreasanticr.pdf (1.7 Mb)

Язык доклада: английский

Website: https://mi-ras-ru.zoom.us/j/6119310351?pwd=anpleGlnYVFXNEJnemRYZk5kMWNiQT09

* ID: 611 931 0351. Password: 5MAVBP.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021