Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Семинар международной лаборатории алгебраической топологии и ее приложений (АТиП)
9 апреля 2021 г. 18:10–19:30, г. Москва, Подключиться к конференции Zoom https://us02web.zoom.us/j/87555207052?pwd=SmVnYXJqcnlVSUFWaFphRHk4UnY0UT09 Пароль необходимо запросить у менеджера лаборатории
 


Разветвленные накрытия многообразий над сферами.

Д. В. Гугнин

Количество просмотров:
Эта страница:20

Аннотация: В размерности большей 2 теория разветвленных накрытий многообразий родилась с классической работы Александера 1920 года, в которой доказывалось существование кусочно-линейного разветвленного накрытия произвольного ориентируемого PL многообразия над сферой той же размерности. Однако, для многообразий размерности n в очень естественной и явной конструкции Александера степень данного разветвленного накрытия всегда больше n!. Возник вопрос, можно ли и насколько можно понизить эту степень d(n) для всех многообразий данной размерности n.
В случае n=2, гиперэллиптические поверхности дают тривиальный ответ d(2)=2. Знаменитая теорема, доказанная в 1974 году независимо Хилденом, Хиршем и Монтезиносом, утверждает d(3)=3. В 1995 году Пиергаллини доказал, что d(4)=4. Для n>=5 даже для n-мерного тора T^n до сих пор не построено его разветвленное накрытие над сферой степени d=n. Нижняя оценка d(n)>=n следует из замечательной теоремы Берстейна-Эдмондса 1978 года, утверждающей что для любого разветвленного накрытия ориентируемых многообразий f:X^n –> Y^n выполнено deg(f)>= L(X)/L(Y), здесь L(Z) — это рациональная когомологическая длина пространства Z.
В докладе Дмитрий расскажет о своей недавней конструкции, которая в частном случае дает явное алгебраическое разветвленное накрытие произвольного прямого произведения сфер S^{m_1}xS^{m_2}x...xS^{m_k} над m-сферой, m=m_1+...+m_k, степени 2^{k-1}. Также будет рассказано о малоизвестной конструкции Арнольда (1997 год или даже раньше) алгебраического разветвленного накрытия CP^n над S^{2n} степени 2^{n-1}.
Помимо этих явных конструкций будет рассказано о некоторых отрицательных результатах, но для более узкого класса разветвленных накрытий, а именно тех, которые возникают как проекции на факторпространства несвободных действий конечных групп на многообразиях при условии, что эти факторпространства являются топологическими многообразиями.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021