RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
15 февраля 2011 г. 18:30, г. Москва, ауд. 16-10 ГЗ МГУ
 


Инфинитезимальная 16-я проблема Гильберта

Д. И. Новиков

Количество просмотров:
Эта страница:123

Д. И. Новиков
Фотогалерея

Аннотация: 16-я проблема Гильберта состоит в оценке сверху числа предельных циклов полиномиального векторного поля на плоскости. В полной общности задача остается открытой даже для квадратичных векторных полей.
Один из наиболее алгебраических вариантов этой задачи — Инфинитезимальная 16-я проблема Гильберта — состоит в оценке числа замкнутых траекторий гамильтоновых векторных полей остающихся замкнутыми (в первом приближении) после полиномиального возмущения поля. Эти траектории соответствуют нулям абелевого интеграла — главной части интеграла от возмущения по траектории векторного поля. Количество этих нулей и требуется оценить.
В нашей совместной работе с Gal Binyamini и Сергеем Яковенко мы получаем явный ответ на этот вопрос, зависящий только от степени векторного поля. Этот результат является следствием оценки числа нулей для решений широкого класса комплексных линейных дифференциальных уравнений и систем. В докладе будет рассказано об этой оценке и основных идеях ее доказательства. Все сведения, выходящие за рамки стандартного курса, будут сообщены.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017