Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
3 мая 2021 г. 18:30, г. Москва, Join Zoom Meeting ID: 818 6674 5751 Passcode: 141592
 


Discontinuously basic sets and the 13th problem of Hilbert

Ivan Reshetnikov

Количество просмотров:
Эта страница:36

Аннотация: A subset $M\subset \mathbb{R}^3$ is called a discontinuously basic subset, if for any function $f \colon M \to \mathbb{R}$ there exist such functions $f_1; f_2; f_3 \colon \mathbb{R} \to \mathbb{R}$ that $f(x_1, x_2, x_3) = f_1(x_1) + f_2(x_2) + f_3(x_3)$ for each point $(x_1, x_2, x_3)\in M$. We will prove a criterion for a discontinuous basic subset for some specific subsets in terms of some graph properties. We will also introduce several constructions for minimal discontinuous non-basic subsets.

Язык доклада: английский

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021