RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
15 марта 2011 г. 18:30, г. Москва, ГЗ МГУ, аудитория 16-10
 


Случайные бесконечные перестановки

Г. И. Ольшанский

Количество просмотров:
Эта страница:180

Г. И. Ольшанский
Фотогалерея

Аннотация: Простейшая модель случайных перестановок задается равномерной мерой на симметрической группе фиксированной степени $n$, когда все элементы этой группы считаются равновероятными, т.е. имеющими вес $1/n!$. Обширный раздел вероятностной комбинаторики посвящен изучению асимптотических свойств случайных перестановок при стремлении параметра $n$ к бесконечности.
Однако вопрос можно поставить по-другому, в духе замены потенциальной бесконечности на актуальную бесконечность: существует ли разумная модель случайных перестановок бесконечного множества (скажем, натурального ряда)? На первый взгляд, ответ отрицательный, поскольку на группе $S$ перестановок натурального ряда ввести равномерную меру невозможно по очевидным причинам. На группе $S$ нет и ближайшего аналога равномерной меры — нормированной меры Хаара. Дело в том, что такая мера существует только на компактных топологических группах, тогда как $S$ ни в какой групповой топологии не будет компактной.
Несмотря на столь очевидные препятствия, содержательные модели бесконечных перестановок существуют. Я хочу рассказать о двух таких моделях. Первая из них (т.н. виртуальные перестановки) была предложена еще в 90-е годы в совместной работе А. М. Вершика, С. В. Керова и докладчика. Виртуальные перестановки существенно используются в теории представлений. Вторая модель возникла в недавних работах А. В. Гнедина и докладчика при изучении $q$-аналога теоремы де Финетти. Возможные применения второй модели еще не вполне ясны, но конструкция настолько проста и естественна, что не может оказаться пустой игрой ума. Любопытно, что при всем различии этих двух моделей, у них обнаруживаются и некоторые общие черты.
Специальных знаний для понимания доклада не требуется.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017