RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
24 марта 2011 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Квантование универсального пространства Тейхмюллера

А. Г. Сергеев
Видеозаписи:
Flash Video 400.1 Mb
Flash Video 2,432.7 Mb
MP4 400.1 Mb

Количество просмотров:
Эта страница:1619
Видеофайлы:867
Youtube Video:

А. Г. Сергеев
Фотогалерея


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Универсальное пространство Тейхмюллера было введено в теории квазиконформных отображений как множество, объединяющее в себе все классические пространства Тейхмюллера компактных римановых поверхностей конечного рода. Оно состоит из гомеоморфизмов единичной окружности, допускающих продолжение до квазиконформных гомеоморфизмов единичного круга, рассматриваемых с точностью до дробно-линейных преобразований. Помимо классических пространств Тейхмюллера универсальное пространство Тейхмюллера содержит подпространство, состоящее из гладких диффеоморфизмов окружности, рассматриваемых с точностью до дробно-линейных преобразований.
Последнее пространство, также как и универсальное пространство Тейхмюллера, играет важную роль в теории струн, где оба пространства интерпретируются как фазовые многообразия указанной теории. В связи с этим возникает задача их квантования. Квантование пространства диффеоморфизмов удается построить в рамках классического дираковского подхода. Однако указанный подход перестает работать в случае всего универсального пространства Тейхмюллера. Для его квантования приходится использовать иной метод, основанный на соображениях из некоммутативной геометрии.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018