RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
4 июня 2009 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Дифференцирование измеримых функций и структурные теоремы типа Уитни–Лузина

Б. Боярский

Institute of Mathematics of the Polish Academy of Sciences
Видеозаписи:
Real Video 237.8 Mb
Windows Media 249.0 Mb
Flash Video 467.7 Mb
MP4 467.7 Mb

Количество просмотров:
Эта страница:625
Видеофайлы:236
Youtube Video:

Б. Боярский
Фотогалерея



Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Пусть $P\subset\mathbb R^n$ – подмножество положительной $n$-меры. Определяется понятие $k$-квазигладких функций $f\colon P\to\mathbb R$, где $k$ – целое, $k\ge 0$. Этот класс функций характеризуется в терминах аппроксимации дифференцируемости $k$-го порядка в смысле Пеано для почти всякой точки $P$.
Для $k=0$ получаем структурную теорию измеримых функций Егорова–Данжуа–Лузина. При $k\ge 1$ установлена связь теории Лузина с теорией Уитни $k$-гладких функций на произвольных замкнутых подмножествах в $\mathbb R^n$.
Будут рассмотрены применения к гармоническому анализу, сингулярным интегралам, теории потенциала и уравнениям в частных производных.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018