RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
5 апреля 2011 г. 18:30, г. Москва, ГЗ МГУ, аудитория 16-10
 


Вырождение теории Ли: многообразия флагов, представления и комбинаторика

Евгений Фейгин

Количество просмотров:
Эта страница:131

Евгений Фейгин
Фотогалерея

Аннотация: Обозначим через $F_n$ многообразия полных флагов в $n$-мерном комплексном пространстве. Свойства этих многообразий тесно связаны со структурной теорией и теорией представлений группы $SL_n$. В частности, многообразие $F_n$ может быть отождествлено с фактор-группой $SL_n$ по борелевской подгруппе, а его гомологии нумеруются элементами группы Вейля — группы перестановок из $n$ элементов.
В докладе мы опишем вырождения $F_n^a$ многообразий флагов. Вырожденные многообразия флагов являются особыми проективными алгебраическими многообразиями, снабженными действием вырожденной группы $SL^a_n$. Мы опишем их топологические и алгебро-геометрические свойства. Как и в случае классических многообразий флагов, геометрия многообразий $F^a_n$ тесно связана с теорией представлений вырожденных групп и алгебр Ли. В частности, имеются аналоги вложений Плюккера и теоремы Бореля–Вейля–Ботта.
Доклад основан на нескольких недавних работах докладчика, в том числе совместных с П. Литтелманном, М. Финкельбергом и Г. Фурье. Специальных знаний для понимания доклада не требуется.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017