Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Городской семинар по теории вероятностей и математической статистике
15 октября 2021 г. 18:00–20:00, г. Санкт-Петербург, ПОМИ, ауд. 311 (наб. р. Фонтанки, 27)
 


Дискретные внутренние объемы и валюации Грассмана

Мария Досполова

Количество просмотров:
Эта страница:60

Аннотация: Для выпуклого решетчатого многогранника $ P \subset \mathbb R ^ d $ размерности $ d $ с вершинами в $ \mathbb Z ^ d $ обозначим через $ L (P) $ его дискретный объем, который определяется как число целых точек, лежащих в $ P $. Знаменитая теорема Эрхарта гласит, что для натурального числа $ n $ функция $ L (nP) $ является многочленом от $ n $ степени $ d $, старший коэффициент которого равен объему $ P $. В частности, $ L(nP) $ аппроксимирует объем $ nP $ при больших $ n $.
В выпуклой геометрии одним из центральных понятий, обобщающих объем, являются внутренние объемы. Основная цель доклада – ввести и рассмотреть их дискретные аналоги. В частности, для них будет сформулирован аналог результата Эрхарта, где объем заменяется внутренним объемом.
Кроме того, мы рассмотрим понятие валюации Грассмана, которое обобщает как дискретный объем, так и валюацию телесного угла, введенную Ривом и Макдональдом.
Доклад основан на работе arXiv:2107.06549

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021