RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
27 сентября 2011 г. 18:30, г. Москва, ГЗ МГУ, аудитория 16-10
 


Многочлены Сабитова для объемов четырехмерных многогранников

А. Гайфуллин

Количество просмотров:
Эта страница:278

А. Гайфуллин
Фотогалерея

Аннотация: Классическая формула Герона выражает площадь треугольника через длины его сторон. Очевидно, что для многоугольников с большим количеством сторон не существует формулы такого типа, так как площадь многоугольника может меняться непрерывно при его изгибании с сохранением длин сторон. Оказывается, что ситуация кардинальным образом изменяется при переходе к размерности 3. В 1996 году И. Х. Сабитов доказал, что объем любого симплициального многогранника в трехмерном евклидовом пространстве является корнем некоторого отмеченного многочлена, зависящего от комбинаторного типа многогранника, с коэффициентами, полиномиально зависящими от длин ребер многогранника. Подчеркнем, что многогранник не предполагается ни выпуклым, ни даже гомеоморфным шару. Одним из основных приложений этого результата является доказательство так называемой «гипотезы о кузнечных мехах», утверждающей, что объем любого изгибаемого многогранника в трехмерном евклидовом пространстве постоянен. С тех пор как были получены эти результаты, оставался открытым вопрос о возможности их обобщения на многогранники старших размерностей. В докладе будет рассказано о недавно полученных докладчиком аналогах теорем Сабитова для многогранников в четырехмерном евклидовом пространстве. Будет доказано, что для любого четырехмерного симплициального многогранника существует многочлен Сабитова и что объем любого изгибаемого четырехмерного многогранника постоянен.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017