RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Общеинститутский семинар «Математика и ее приложения» Математического института им. В.А. Стеклова Российской академии наук
28 января 2010 г. 16:00, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Солитоны в упругих оболочках

А. Т. Ильичев
Видеозаписи:
Real Video 157.2 Mb
Windows Media 163.8 Mb
Flash Video 169.8 Mb
MP4 169.8 Mb

Количество просмотров:
Эта страница:527
Видеофайлы:304
Youtube Video:

А. Т. Ильичев
Фотогалерея



Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке



Аннотация: Рассматривается течение несжимаемой идеальной жидкости в упругой мембраной цилиндрической трубе, моделируемой осесимметричной оболочкой. В биологической литературе считается, что при подходящем выборе уравнения состояния (упругого потенциала), течение крови в артериях может быть смоделировано подобным течением.
Впервые показано, что кроме стоячих солитонов в форме аневризмы при покое жидкости на бесконечности, которые имеют место при конкретных диапазонах начальных деформаций трубы и постоянном давлении в жидкости, существует четыре семейства (два по потоку и два против потока) бегущих уединенных волн при любых значениях начальной деформации и скорости жидкости на бесконечности и физически допустимых упругих потенциалах. Эти уединенные волны обладают скоростями близкими к скоростям (ненулевым), которые даются линейным дисперсионным соотношением. Показано также, что указанные солитоны грубы, в том смысле, что полная система уравнений имеет околокритические семейства решений типа уединенных волн и семейства солитонов, полученных пренебрежением членов высшего порядка по амплитуде в уравнениях, равномерно приближают указанные семейства решений.
Обсуждается динамическая устойчивость стоячих уединенных волн в форме аневризмы.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018