RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Римановы поверхности, алгебры Ли и математическая физика
7 октября 2011 г. 17:00, г. Москва, Независимый московский университет, Большой Власьевский переулок, д.11, ауд. 303
 


Семейства эллиптических кривых, формальные группы и дифференциальные уравнения

Е. Ю. Бунькова

Математический институт им. В. А. Стеклова РАН

Количество просмотров:
Эта страница:123

Аннотация: В докладе будет представлен явный вид закона сложения формальной группы, названной эллиптической формальной группой, и соответствующей общей модели Вейерштрасса эллиптической кривой в арифметической униформизации Тейта. Из этого результата получен ряд следствий. В частности, найден явный вид экспоненты эллиптической формальной группы и дифференциальные уравнения, решениями которых она является. Экспонента эллиптической формальной группы оказалась эллиптической функцией порядка 2 либо 3 в невырожденном случае.
В докладе будет показана связь экспоненты эллиптической формальной группы с решениями в форме бегущей волны уравнения Кортевега–де Фриза и модифицированного уравнения Кортевега–де Фриза. Род Хирцебруха, заданный экспонентой эллиптической формальной группы, принимает значения в кольце полиномов с целыми коэффициентами от 5 переменных на любом стабильно-комплексном многообразии. Этот род обобщает известные роды: двупараметрический род Тодда, L-род и эллиптический род Ошанина–Виттена.
В докладе будут представлены результаты по известной задаче о кольцах, над которыми классическая сигма-функция Вейерштрасса разлагается в ряд Гурвица. Будет представлено решение уравнения теплопроводности в терминах $\sigma$-функции, динамика параметров которой описывается решениями уравнения Шази. В качестве следствия на основе преобразования Коула–Хопфа будут построены соответствующие решения уравнения Бюргерса.
В докладе будет введена формальная группа Кричевера, экспонента которой задаёт род Кричевера, и рассмотрена её связь с эллиптической формальной группой. Будет представлена классификация эллиптических формальных групп Кричевера. В качестве следствия мы получим новые роды Хирцебруха, обладающие сразу двумя фундаментальными свойствами: они являются целочисленными над кольцом полиномов с целыми коэффициентами от параметров эллиптической кривой, и при этом соответствующие им эквивариантные роды являются жёсткими на многообразиях с $S^1$-эквивариантной SU-структурой.
Все необходимые определения будут даны в ходе доклада.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018