RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Большой семинар кафедры теории вероятностей МГУ
2 ноября 2011 г. 16:45, г. Москва, ГЗ МГУ, ауд. 16-24
 


Локальные предельные теоремы для случайных блужданий на полуоси

В. А. Ватутин

Математический институт им. В. А. Стеклова РАН

Количество просмотров:
Эта страница:133

Аннотация: Пусть $\{S_0=0, S_n, n\geq 1\}$ — случайное блуждание, порожденное последовательностью независимых одинаково распределенных случайных величин $X_1,X_2,…$, и пусть
$$ \tau^-=\min\{n\geq 1:S_{n}\leq 0\} $$
и
$$\tau ^{+}=\min \{n\geq1:S_{n}>0\}. $$
Предполагая. что распределение случайной величины $X_1$ принадлежит области притяжения устойчивого закона с параметром $\alpha$, мы исследуем асимптотическое поведение при $n\to\infty$ вероятностей $\mathbf{P}(\tau ^\pm=n)$ и доказываем локальные предельные теоремы типа Гнеденко и Стоуна для условных вероятностей
$$ \mathbf{P}(S_{n}\in\lbrack x,x+\Delta )|\tau ^->n) $$
при фиксированном $\Delta $ и $x=x(n)\in (0,\infty)$.
Будут также указаны применения этих теорем к некоторым задачам теории ветвящихся процессов в случайной среде.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017