RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
15 ноября 2011 г. 18:30, г. Москва, ГЗ МГУ, аудитория 16-10
 


Супергеометрия и скобки

Ф. Ф. Воронов

Количество просмотров:
Эта страница:101

Ф. Ф. Воронов
Фотогалерея

Аннотация: В докладе рассматривается связь геометрических структур на супермногообразиях таких, как гомологические векторные поля, со скобками Пуассона, алгебрами Ли и их обобщениями (гомотопические алгебры Ли и алгеброиды Ли). Все необходимые понятия будут введены по ходу изложения и предварительное знакомство с ними не предполагается.
В первой части доклада мы покажем, как при описании дифференциально-геометрических объектов на обычном многообразии естественно возникают супермногообразия. Введение супермногообразий имеет здесь такое же преимущество, как переход от компонентной записи уравнений Максвелла к инвариантному языку векторного и тензорного анализа. Эта аналогия не случайна: в современной математической физике супергеометрия является стандартным языком, удачно дополнившим классические тензорные обозначения. Потом мы определим «гомологические векторные поля» на супермногообразии. Это понятие обладает большой унифицирующей силой: гомологические векторные поля играют роль производящих функций разнообразных алгебраических и дифференциально-геометрических объектов. Примером служат обычные алгебры Ли, для которых на языке гомологических векторных полей легко и просто возникают полезные обобщения, такие как «сильно-гомотопические алгебры Ли» и алгеброиды Ли. Алгеброиды Ли являются инфинитезимальным объектом для группоидов Ли. Они описывают симметрии более общей, чем групповая, природы. Фундаментальное значение группоидов Ли в дифференциальной геометрии подчеркивалось Эресманном в 1950-е годы, а современное развитие связало алгеброиды Ли с супермногообразиями.
Более подробно об алгеброидах Ли и родственных им объектах будет рассказано во второй части доклада. Мы расскажем о «неабелевой формуле цепной гомотопии» и «неабелевом» аналоге леммы Пуанкаре, частными случаями которого являются обычная лемма Пуанкаре для замкнутых форм и утверждение, что «связность нулевой кривизны есть чистая калибровка». Из «неабелевой леммы Пуанкаре», в частности, легко получаются классические результаты Маккензи по интегрированию транзитивных алгеброидов Ли. Мы обсудим это, а также любопытные «нелинейные» аналоги алгебр(оидов) Ли, возникающие из градуированной геометрии, т.е. теории супермногообразий, снабженных дополнительной Z-градуировкой («весом»).

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017