RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
29 ноября 2011 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Полугруппы накрытий

Вик. С. Куликов

Математический институт им. В. А. Стеклова РАН

Количество просмотров:
Эта страница:79

Аннотация: На множестве отмеченных $d$-листных разветвленных накрытий $f\colon E\to F$ двумерных ориентированных замкнутых поверхностей $(F; q)$ с краем $\partial F\simeq S^1$ и отмеченной точкой $q\in\partial F$, рассматриваемых с точностью до некоторой “естественной” эквивалентности, можно ввести структуру полугруппы. В докладе будет показано, что введение такой полугрупповой структуры позволяет, в частности, доказать, что если определение эквивалентности накрытий включает условие что накрытия, полученные одно из другого с помощью непрерывной деформации точек ветвления, являются эквивалентными, то для поверхностей $F$ фиксированного рода $p$ число неэквивалентных отмеченных накрытий с фиксированной группой Галуа $G$ накрытия и фиксированным набором типов локальных монодромий точек ветвления при условии, что число точек ветвления каждого типа достаточно велико, зависит только от группы $G$ и множества типов локальных монодромий, и не зависит от числа точек ветвления, рода $p$ и определения эквивалентности накрытий. В частности, если $G = \Sigma_m$ — симметрическая группа и один из типов ветвления представлен нечетной перестановкой, оставляющей неподвижными по крайней мере два элемента, то упомянутое выше число неэквивалентных накрытий равно единице. Аналогичные результаты также верны и для отмеченных накрытий замкнутых поверхностей без края.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019