RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
14 февраля 2012 г. 18:30, г. Москва, ГЗ МГУ, аудитория 16-10
 


Комбинаторные свойства динамических систем, спектр и квантовые солитоны

А. А. Приходько

Количество просмотров:
Эта страница:107

А. А. Приходько
Фотогалерея

Аннотация: Речь пойдет о динамических системах, заданных преобразованием или действием группы, сохраняющим меру в фазовом пространстве. Б. Купман, Дж. фон Нейман и др. (1931–32) предложили сопоставить динамической системе унитарный оператор (унитарное представление) в гильбертовом пространстве квадратично суммируемых относительно инвариантной меры комплекснозначных функций. Спектральные инварианты этого унитарного оператора называются спектром динамической системы. В то же время преобразование с инвариантной мерой, как правило, можно ассоциировать со случайным процессом $x_k$, генерирующим бесконечное слово над конечным алфавитом.
Долго оставался открытым вопрос о том, определяет ли спектр динамическую систему однозначно с точностью до изоморфизма? Знаменитый результат А. Н. Колмогорова (1958) гласит, что существует инвариант комбинаторной природы (метрическая энтропия), определяемый в терминах структуры последовательности $x_k$ и позволяющий различить динамические системы, обладающие одинаковым спектром. Характерным примером является процесс Бернулли — последовательность независимых случайных величин $x_k$, принимающих значения 1 и 0 с вероятностью $p$ и $1-p$. Унитарный оператор для такой системы имеет спектр бесконечной кратности, причём спектральная мера системы эквивалентна мере Лебега на $[0,1]$ при любом $p$.
С. Банах сформулировал открытый и по сей день вопрос о том, существует ли преобразование, обладающее лебеговской спектральной мерой и в то же время спектром кратности один? В докладе будет рассказано о конструкции эргодического потока — однопараметрического семейства преобразований, дающего положительный ответ к гипотезе Банаха для действий группы $R$, и о том, как данная динамическая система связана с вопросом Дж. Литтлвуда (1966) о плоских тригонометрических полиномах и солитонными решениями некоторых квантовых систем. Обобщая обнаруженное явление, мы расскажем о новых аналитических и комбинаторных эффектах, связанных с проблемой исследования спектрального типа символических динамических систем.
Специальных знаний для понимания содержания доклада не требуется.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017