RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Узлы и теория представлений
20 марта 2012 г. 18:30–20:00, г. Москва, ГЗ МГУ, ауд. 14-03
 


О неоднородном евклидовом пространстве

А. И. Долгарев

Пензенский государственный университет

Количество просмотров:
Эта страница:82

Аннотация: В сообщении освещаются следующие вопросы.
1) В книге П. К. Рашевского по тензорному анализу и римановой геометрии доказано, что 3-мерная евклидова пространственная составляющая псевдоевклидова пространства содержит евклидово подпространство размерности 2, инвариантное во всех псевдоевклидовых движениях. Это означает, что 3-мерное евклидово пространство обладает 2-мерным инвариантным направлением. Следовательно, евклидово подпространство псевдоевклидова пространства неоднородно.
2) Кроме того, неоднородность 3-мерного евклидова пространства устанавливается независимо от вложения в псевдоевклидово пространство. На основании свойств евклидовых регулярных кривых с использованием галилеевых методов получено, что евклидово пространство обладает 2-мерным направлением, инвариантным в его движениях. Отсюда следует неоднородность евклидова пространства.
3) Приводится группа движений неоднородного евклидова пространства. Неоднородная евклидова геометрия изучает инварианты указанной группы движений. Это согласуется с Эрлангенской программой Ф. Клена.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020