Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Группы Ли и теория инвариантов
27 апреля 2005 г. 16:20, г. Москва, ГЗ МГУ, ауд. 13-06
 


О шубертовском разложении для двойных грассманианов

Е. Ю. Смирнов

Количество просмотров:
Эта страница:143

Аннотация: Классическое исчисление Шуберта — это изучение геометрии замыканий орбит борелевской группы $B\subset \mathrm{GL}(n)$, действующей на грассмановом многообразии $Gr(k,n)$. Можно рассмотреть эту же задачу для диагонального действия $B$ на произведении двух грассманианов, то есть описать случаи взаимного расположения в $n$-мерном пространстве двух подпространств (произвольной размерности) и полного флага.
Для этого случая получено комбинаторное описание $B$-орбит и построено разрешение особенностей их замыканий, аналогичное разрешению Ботта–Самельсона особенностей многообразий Шуберта в грассманиане. Наряду с этими результатами, принадлежащими докладчику, будут изложены некоторые общие факты о $B$-орбитах на сферических многообразиях.
Если позволит время, я скажу несколько слов о связи шубертовских разложений многообразий флагов и двойных грассманианов с теорией представлений колчанов типа $\mathsf A$ и $\mathsf D$.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021