RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Совместный семинар лаборатории J.-V. Poncelet и сектора Алгебры и теории чисел № 4.1 ИППИ РАН «Арифметика, геометрия и теория кодирования»
14 мая 2012 г. 18:00, г. Москва, НМУ (Большой Власьевский пер., 11), ауд. 308
 

Предзащиты диссертаций


Полубесконечная гомологическая алгебра

Л. Е. Посицельскийab

a Институт проблем передачи информации им. А. А. Харкевича РАН, г. Москва
b Национальный исследовательский университет «Высшая школа экономики»

Количество просмотров:
Эта страница:137

Аннотация: Некоторым алгебраическим объектам, таким как тейтовские (локально линейно компактные) алгебры Ли или локально компактные вполне несвязные топологические группы, можно сопоставить теории (ко)гомологий, занумерованные всеми целыми числами и представляющие собой «смесь» гомологий вдоль одной группы переменных и когомологий вдоль другой. В наибольшей ныне известной общности, такие двусторонние производные функторы сопоставляются ассоциативным полуалгебрам, т.е. алгебрам над коалгебрами или кокольцами.
В отличие от обычной ассоциативной алгебры или кольца, над коалгеброй или полуалгеброй есть не две, а четыре абелевых категории модулей — наряду с комодулями, есть еще контрамодули. Естественной областью определения теорий полубесконечных (ко)гомологий являются категории неограниченных в обе стороны комплексов (полу,контра)модулей, рассматриваемых с точностью до эквивалентности, чуть более тонкой, чем привычный квазиизоморфизм — так называемые полупроизводные категории. Полупроизводные категории левых полумодулей и левых полуконтрамодулей над данной полуалгеброй естественным образом эквивалентны.
Я расскажу об истории этой области алгебры, ключевых идеях и концепциях, составляющих ее современное состояние, и приведу наброски некоторых доказательств.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021