Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Узлы и теория представлений
20 ноября 2012 г. 18:30, г. Москва, ГЗ МГУ, ауд. 14-03
 


Множества без решений линейных уравнений

И. Д. Шкредов

Московский государственный университет им. М. В. Ломоносова, механико-математический факультет

Количество просмотров:
Эта страница:197

Аннотация: Пусть дано множество $A$ отрезка натурального ряда $[1,…,N]$ и некоторое линейное уравнение $c_1 x_1 +…+ c_k x_k = b$, где $c_j$$b$ — целые числа. Предположим, что данное уравнение не имеет решений, если переменные $x_1,…, x_k$ пробегают $A$. Что тогда можно сказать о множестве $A$, например, о его плотности в $[1,…,N]$? Данный вопрос включает в себя много важных семейств множеств, например, сидоновские множества, множества без решений аффинных однородных уравнений и т.д. В докладе будет дан небольшой обзор имеющихся здесь результатов.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021