Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Динамические системы
19 марта 2010 г. 18:25, г. Москва, МГУ, ГЗ, ауд. 14-14
 


Разрешение особенностей в семействах аналитических дифференциальных уравнений

С. И. Трифонов

Количество просмотров:
Эта страница:105

Аннотация: Простейшее разрешение особенностей, так называемое элементарное раздутие (сигма-процесс, elementary blow-up) — это трансформация окрестности точки на двумерной поверхности, при котором вместо одной точки вклеивается проективная прямая. Для этого вместо координат $(x,y)$ вводятся две карты $(x, u=y/x)$ и $(y, v=x/y)$. Если в окрестности задано аналитическое векторное поле с особой точкой, оно поднимается до аналитического поля направлений с одной или несколькими особыми точками на вклеенной проективной прямой. Особые точки раздутого поля оказываются «проще» исходной особой точки — за исключением элементарных особых точек, линеаризация векторного поля в которых имеет хотя бы одно ненулевое собственное значение. Теорема Бендиксона–Зайденберга утверждает, что за конечное число элементарных раздутий любая особая точка аналитического векторного поля рассыпается на некоторое число элементарных особых точек.
В докладе обсуждается обобщение этой конструкции на семейства аналитических полей направлений, и доказывается аналог теремы Бендиксона–Зайденберга для семейств, удовлетворяющих естественным условиям на поведение особых точек. (В частности, теорема применима к любому семейству полиномиальных векторных полей на плоскости.) Структура особых точек в семействах полей направлений может включать в себя так называемые сингулярные возмущения. Предлагаемая конструкция разрешения особенностей порождает «новые» сингулярные возмущения. Это всерьёз осложняет анализ получающихся семейств, и мы обсудим этот феномен достаточно подробно.
Обсуждаемый результат опубликован в 1995 году.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021