RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Математический кружок
6 ноября 2012 г., г. Долгопрудный, 115 КПМ МФТИ
 


Метод зеркальног­о спуска в ряде выпуклых задачах оптимизаци­и и управления­

А. В. Назин

Институт проблем управления им. В. А. Трапезникова РАН, г. Москва
Материалы:
Adobe PDF 172.0 Kb

Количество просмотров:
Эта страница:316
Материалы:87
Youtube Video:





Аннотация: Метод зеркальног­о спуска (МЗС) известен с конца 70-х годов [1] как существенное обобщение стандартного градиентного метода. В частности, он позволяет получать робастные алгоритмы выпуклой оптимизации градиентного типа в пространствах большой размерности, когда обычные градиентные алгоритмы уже не работают. Исходная идея состоит в осуществлении градиентного движения в сопряженном (двойственном) пространстве и отображении получаемой траектории в исходное пространство.
Занятие построено по следующей схеме.
1. Краткое введение. Идея МЗС (в непрерывном времени) и некоторые его свойства.
Роль преобразования Лежандра, функции Ляпунова, дополнительное усреднение траектории исходного пространства. Оценка скорости сходимости по оптимизируемой функции. Некоторые выводы.
2. Общие понятия, объекты и конструкции: исходная и двойственная норма в, прокси-функция на заданном выпуклом компакте и ее сопряженная (преобразование Лежандра-Фенхеля), их свойства (при условии сильной выпуклости). Два примера: 1) «евклидовый» случай, 2) энтропия на стандартном симплексе и потециал Гиббса.
3. Выпуклая задача стохастической оптимизации (и ее детерминированный случай). Стохастический субградиент и алгоритм ЗС, его верхняя граница (скорость сходимости).
4. Приложение МЗС к следующим задачам: 1) оценивание­ главного вектора стохастиче­ской матрицы,
2) PageRank и робастный вариант, 3) многорукий­ бандит.
5. Заключение.

Материалы: math_kruzhok_06_11_2012.pdf (172.0 Kb)

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020