RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Комплексные задачи математической физики
4 февраля 2013 г. 16:00, г. Москва, МИАН, комн. 430 (ул. Губкина, 8)
 


Гармонические отображения в комплексные грассмановы многообразия

Ю. Белошапка

Московский государственный университет им. М. В. Ломоносова

Количество просмотров:
Эта страница:125

Аннотация: На докладе я перескажу статью Бёрстолла и Саламона «Турниры, флаги и гармонические отображения». В статье изучается специфика гармонических отображений из римановой поверхности в комплексное Грассманово многообразие (которые в общей постановке исследуются как отображения из риманова многообразия $M$ в риманово многообразие $N$). Твисторная конструкция в общем виде позволяет получать гармонические отображения как проекции почти голоморфных отображений в некоторое почти комплексное твисторное многообразие (расслоенное над $N$). Твисторным многообразием для комплексного многообразия Грассмана является почти комплексное флаговое многообразие относительно некоторой (неинтегрируемой) почти комплексной структуры $J$. Это выводится комбинаторно с помощью отождествления гармонического отображения в грассманово многообразие с некоторым подрасслоением тривиального расслоения. В случае, когда риманова поверхность $M$ — это сфера Римана, верно и обратное утверждение, что для любого гармонического отображения в грассманово многообразие найдется $J$-почти голоморфная кривая в флаговом многообразии, чья проекция будет гармоническим отображением. Это доказывается с помощью теоремы Биркгофа–Гротендика о разложении голоморфного векторного расслоения.
Цикл докладов

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017