Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары






Семинар им. В. А. Исковских
19 ноября 2009 г. 18:30, г. Москва, МИАН, комн. 540 (ул. Губкина, 8)
 


Проблема Нётер для центральных расширений симметрических и альтернированных групп

А. С. Трепалин

Количество просмотров:
Эта страница:65

Аннотация: Рассмотрим регулярное действие конечной группы $G$ на множестве переменных $\{X_g\}$. Вначале для альтернированной группы $A_n$ мы докажем, что для нечетного $n$ $\mathbb{Q}(A_n)$ рационально над $\mathbb{Q}(A_{n-1})$. Далее мы получим аналогичный результат для произвольного центрального расширения $A_n$ или $S_n$ над $\mathbb{Q}(\xi_N)$ для подходящего $N$. Конкретные приложения полученного результата: новое доказательство рациональности $\mathbb{Q}(X_1, X_2, X_3, X_4, X_5)^{A_5}/ \mathbb{Q}$, утвердительный ответ для проблемы Нётер над $\mathbb{Q}$ в случае $\tilde A_5$ и $\tilde S_5$, утвердительный ответ для проблемы Нётер над $\mathbb{C}$ для любого центрального расширения $A_n$ или $S_n$ при $n\le 5$.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021