RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Большой семинар кафедры теории вероятностей МГУ
14 октября 2009 г. 16:45, г. Москва, ГЗ МГУ, ауд. 16-24
 


Предельные теоремы для потоков на поверхностях

А. И. Буфетов

Количество просмотров:
Эта страница:162

Аннотация: Под плоской поверхностью будем понимать двумерную компактную ориентированную поверхность без края, снабженную плоской структурой, то есть атласом карт, функции перехода между которыми суть параллельные переносы. Если род поверхности больше единицы, то допускается конечное число конических особенностей, причем угол в каждой предполагается кратным развернутому.
В таком случае движение в заданном направлении задает глобально определенный сохраняющий площадь поток на поверхности. Нас будет интересовать поведение эргодических интегралов этого потока.
Первый результат доклада, продолжающий работы А.В. Зорича и Дж. Форни, — это асимптотическое разложение для эргодических интегралов с точностью до членов, растущих медленнее любой степени времени. Главную роль тут играет специальное конечномерное пространство гельдеровских коциклов на траекториях потока. Из асимптотического разложения получаются и предельные теоремы для потоков на поверхностях; при этом оказывается, что предельные распределения имеют компактный носитель.
Доказательство основано на символическом представлении потоков на поверхностях как специальных потоков над автоморфизмами А. М. Вершика, конструкции, сходной с данной Ш. Ито.
См. также

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017