RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








20 января 2014 г. 15:00, Representation Theory and Analysis of Reductive Groups: Spherical Spaces and Hecke Algebras, The Mathematisches Forschungsinstitut Oberwolfach, 19–25 Jan 2014, Germany  


Quotients by conjugation action, cross-sections, singularities, and representation rings

V. L. Popov

Количество просмотров:
Эта страница:72

Аннотация: Let $G$ be a connected semisimple algebraic group over an algebraically closed field $k$. In 1965 R. Steinberg proved that if $G$ is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary $G$ such a cross-section exists if and only if the universal covering isogeny of $G$ is bijective; this answers Grothendieck's question. In particular, for $char(k)=0$, the converse to Steinberg's theorem holds. The existence of a cross-section in $G$ implies, at least for $char(k)=0$, that the algebra $k[G]^G$ of class functions on $G$ is generated by $rk(G)$ elements. We describe, for arbitrary $G$, a minimal generating set of $k[G]^G$ and that of the representation ring of $G$ and answer two Grothendieck's questions on constructing generating sets of $k[G]^G$. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary $G$ and the existence of a rational cross-section in $G$; this answers the other Grothendieck's question.

Язык доклада: английский

Website: http://www.mfo.de/occasion/1404/www_view

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018