RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар «Глобус» (записи с 2011 года)
30 января 2014 г. 15:40, г. Москва, г. Москва, НМУ, ауд. 306
 


Интегрируемая теория вероятностей: двумерные стохастические системы и их асимптотика

В. Е. Горинab

a Институт проблем передачи информации им. А. А. Харкевича РАН, г. Москва
b Massachusetts Institute of Technology
Видеозаписи:
Flash Video 621.5 Mb
MP4 621.5 Mb

Количество просмотров:
Эта страница:389
Видеофайлы:175

В. Е. Горин


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: В последние 15 лет в понимании асимптотического поведения двумерных стохастических систем был достигнут существенный прогресс с использованием методов, далеко выходящих за пределы классической теории вероятностей.
Известные примеры подобных систем – это, например, случайные ступенчатые поверхности, шестивершинная модель ("квадратный лёд"), спектры случайных матриц, системы взаимодействующих частиц типа TASEP, направленные полимеры в (двумерной) случайной среде. Результаты последних лет заставляют считать, что все эти системы обладают схожим асимптотическим поведением, которое может быть описано с помощью новых, по сравнению с одномерным случаем, предельных объектов. Эти объекты – свободное гауссовское поле и распределения Трейси-Видома (тогда как в одномерном случае возникают нормальное распределение и броуновское движение.)
Мы далеки до проверки универсальности такого поведения, однако для некоторого класса вероятностных распределений её удаётся доказать. Многие строгие математические результаты в этом направлении основаны на связях с симметрическими функциями теоретико-представленческого происхождения и, более широко, с представлениями бесконечномерных групп. В докладе я расскажу о таких вероятностных распределениях и современных способах их анализа.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017