RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар отдела математической логики «Алгоритмические вопросы алгебры и логики»
4 марта 2014 г. 18:30–20:05, г. Москва, ГЗ МГУ, ауд. 16-04
 


Совместная логика задач и высказываний

С. А. Мелихов

Количество просмотров:
Эта страница:108

Аннотация: В комментарии к своему собранию сочинений А.Н.Колмогоров заметил, что его статья 1932 года "писалась в надежде на то, что логика решения задач сделается со временем постоянным разделом курса логики. Предполагалось создание единого логического аппарата, имеющего дело с объектами двух типов - задачами и высказываниями." В докладе строится подобное совместное исчисление, обозначаемое далее QHC, являющееся консервативным расширением как интуиционистского предикатного исчисления, обозначаемого QH, так и классического предикатного исчисления, обозначаемого QC. При этом:
1) единственные новые связки ? и ! исчисления QHC индуцируют соответствие (типа) Галуа между алгебрами Линденбаума QH и QC, рассмотренными как частично упорядоченные множества (т.е. пару сопряжённых функторов между соответствующими категориями);
2) колмогоровское вложение двойного отрицания из QC в QH продолжается до интерпретации QHC в QH, тождественной на QH;
3) гёделево вложение из QH в модальную логику QS4 продолжается до интерпретации QHC в QS4, тождественной на QS4 (последняя отождествлена с фрагментом QHC).
Если позволит время, мы также обсудим: а) пучковые модели QHC и их интерпретацию в терминах устойчивых решений алгебраических уравнений, аналогичную данной П.С.Новиковым интерпретации топологических моделей QH в терминах взвешивания грузов; б) модифицированную BHK-интерпретацию интуиционистской логики, мотивированную, с одной стороны, её моделями (топологическими моделями, полными моделями Медведева-Лэухли и пучковыми моделями из пункта "а"), а с другой стороны - выдвинутым Колмогоровым требованием независимости от "теоретико-познавательных предпосылок".

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019