RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар «Глобус» (записи с 2011 года)
26 июня 2014 г. 15:40, г. Москва, конференц-зал НМУ (Москва, Большой Власьевский пер., 11)
 


Нелинейные эллиптические уравнения и неассоциативные алгебры

С. Г. Влэдуцab

a Aix-Marseille Université
b Институт проблем передачи информации им. А. А. Харкевича РАН, г. Москва
Видеозаписи:
Flash Video 774.1 Mb
MP4 774.1 Mb

Количество просмотров:
Эта страница:465
Видеофайлы:131

С. Г. Влэдуц


Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Аннотация: Исследование нелинейных эллиптических уравнений с частными производными началось в 1903г. с диссертации С.Н. Бернштейна, который доказал аналитичность решений для уравнений с аналитическими коэффициентами, возникающих как уравнения Эйлера-Лагранжа вариационных задач, решив таким образом 19 проблему Гильберта. В 1953 г. Л.Ниренберг сделал важный шаг в теории, доказав гладкость решений для произвольных нелинейных равномерно эллиптических уравнений в размерности 2.
Таким образом возникла естественная проблема существования негладких решений для нелинейных равномерно эллиптических уравнений в размерности > 2. Она была открыта до 2007 г., когда было построено первое равномерно эллиптические уравнение с негладким решением. Это построение использовало алгебру кватернионов. Впоследствии применение неассоциативных алгебр: чисел Кэли и жордановых алгебр позволило сильно продвинуться в классификации негладких решений равномерно эллиптических уравнений.
Доклад, основанный на совместных с Н. Надирашвили и В. Ткачевым работах, будет посвящен обзору полученных в этом направлении результатов.
Доклад будет прочитан на английском языке.
См. также

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017