RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Семинар отдела геометрии и топологии МИАН «Геометрия, топология и математическая физика»
13 августа 2014 г. 14:00, г. Москва, МИАН
 


Алгебры операторов Лакса, градуировки полупростых алгебр и интегрируемые системы

О. К. Шейнман

Математический институт им. В. А. Стеклова Российской академии наук

Количество просмотров:
Эта страница:84

Аннотация: В 2001 г. И.М. Кричевер определил операторы Лакса со спектральным параметром на римановой поверхности в терминах параметров Тюрина голоморфных расслоений на римановых поверхностях, и применил эту конструкцию к исследованию систем типа Хитчина/Калоджеро и их обобщений, в частности к доказательству их гамильтоновости.
В 2006 г. в совместной работе И.М. Кричевера и автора были обнаружены мультипликативные свойства операторов Лакса этого класса, и построены их аналоги со значениями в классических алгебрах Ли. Рассматриваемые как мероморфные функции спектрального параметра, эти операторы образуют бесконечномерные алгебры Ли, непосредственно обобщающие алгебры петель. Они являются почти градуированными и обладают нетривиальными центральными расширениями. Из особых алгебр Ли позднее удалось построить алгебру операторов Лакса для $G_2$. Выяснилась следующая закономерность: замкнутость операторов Лакса относительно коммутатора и гамильтоновость соответствующих уравнений эквивалентны одним и тем же соотношениям на параметры Тюрина. Некоторые свойства операторов Лакса, такие как порядки их полюсов в точках Тюрина, оставались необъясненными.
В докладе будет рассмотрена общая конструкция алгебр операторов Лакса для произвольной комплексной полупростой алгебры Ли, позволяющая дать единое доказательство их основных свойств. Будет показано как в рамках этой конструкции возникают параметры Тюрина, что вероятно указывает на связь голоморфных расслоений и полупростых алгебр Ли. Если позволит время, в аналогичных терминах будет дана конструкция $M$-операторов и сформулирована теорема о существовании коммутативной иерархии лаксовых уравнений.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019