Forthcoming seminars
Seminar calendar
List of seminars
Archive by years
Register a seminar

Forthcoming seminars

You may need the following programs to see the files

Steklov Mathematical Institute Seminar
December 18, 2014 16:00, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)

Lax operator algebras and integrable systems

O. K. Sheinman
Video records:
Flash Video 366.6 Mb
Flash Video 2,196.2 Mb
MP4 366.6 Mb

Number of views:
This page:657
Video files:236
Youtube Video:

O. K. Sheinman
Photo Gallery

Видео не загружается в Ваш браузер:
  1. Установите Adobe Flash Player    

  2. Проверьте с Вашим администратором, что из Вашей сети разрешены исходящие соединения на порт 8080
  3. Сообщите администратору портала о данной ошибке

Abstract: Lax operator algebras are introduced in [1] in connection with the notion of Lax operator with spectral parameter on a Riemann surface (earlier introduced by I. M. Krichever). These are algebras of currents defined on Riemann surfaces and taking values in the semi-simple or reductive Lie algebras. They are closely related to integrable systems like Hitchin systems, Calogero–Moser systems, classical gyroscopes, problems of flow around a solid body. In many respects, the Lax operator algebras are analogous to the Kac–Moody algebras. Non-twisted Kac–Moody algebras are Lax operator algebras on Riemann sphere with marked points 0, and $\infty$.
Up to the end of 2013 Lax operator algebras have been defined and constructed only for classical Lie algebras over $\mathbb C [1,2]$, and for the exceptional Lie algebra $G_2$, in terms of their matrix representations. A natural, and long standing question of their general construction in terms of root systems has been resolved in the beginning of this year [3]. It is a pleasant duty of the author to stress the role of E. B. Vinberg in the discussion of the question.
In the talk, we are going to give a general definition of Lax operator algebras in terms of gradings of semi-simple Lie algebras, formulate their basic properties. It will be stated a connection with Tyurin parameters of holomorphic vector bundles on Riemann surfaces. We are planning to formulate a general approach to construction of finite-dimensional Riemann surfaces based on the same circle of ideas.

  1. I. M. Krichever, O. K. Sheinman, “Algebry operatorov Laksa”, Funkts. analiz i pril., 41:4 (2007), 46–59, arXiv: math.RT/0701648  mathnet  crossref  mathscinet  zmath; I. M. Krichever, O. K. Sheinman, “Lax operator algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294  crossref  mathscinet  zmath  isi  scopus
  2. O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH & Co, Berlin–Boston, 2012, 150 pp.  mathscinet
  3. O. K. Sheinman, “Lax operator algebras and gradings on semi-simple Lie algebras”, Transformation groups, arXiv: 1406.5017 (accepted)

SHARE: FaceBook Twitter Livejournal
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019