RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Заседания Московского математического общества
20 октября 2015 г., г. Москва, ГЗ МГУ, аудитория 16-10
 


Автоморфные произведения Борчердса в геометрии, топологии и физике

В. А. Гриценко

Количество просмотров:
Эта страница:93

Аннотация: Автоморфные произведения Борчердса успешно используются для решения различных задач метематики и теоретической физики. В качестве примеров можно привести доказательство гипотезы «Monstrous moonshine», данное Борчердсом, определение размерности Кодаиры пространств модулей поляризованных К3 поверхностей (последний открытый вопрос программы А.Вейля о К3 поверхностях), предложенное в цикле работ Гриценко–Хулека–Санкарана (2005–2012), результаты о втором квантованном эллиптическом роде многообразий Калаби–Яу и $N=4$ теории (Dijkgraaf, Moore, E. and H. Verlinde; Zagier, Dabholkar, ...), явное вычисление BCOV-аналитического кручения (Yoshikawa) и т.д.
В этом докладе я планирую дать общедоступное введение в теорию автоморфных произведений Борчердса и покажу, как они используются для решения различных геометрических задач. Я дам обзор самых последних результатов (опубликованных или анонсированных) и сформулирую открытые вопросы и проблемы. Доклад рассчитан на широкую аудиторию. Специальных знаний по теории автоморфных форм у слушателей не предполагается — все необходимые понятия будут объяснены по ходу доклада.
См. также

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017