RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Ближайшие семинары
Календарь семинаров
Список семинаров
Архив по годам
Регистрация семинара

Поиск
RSS
Ближайшие семинары





Для просмотра файлов Вам могут потребоваться








Автоморфные формы и их приложения
4 октября 2016 г., г. Москва, Усачёва улица, дом 6, аудитория 306
 


Тета-блоки и произведения Борчердса

В. А. Гриценко

Université de Lille, Departement de Mathématique

Количество просмотров:
Эта страница:84



Аннотация: Произвольно взятое произведение Борчердса является мероморфной автоморфной формой. Как построить серии разумных примеров голоморфных произведений Борчердса? Этот вопрос особенно интересен, если мы наложим ограничения на вес модулярных форм. В этом случае будут получены примеры модулярных форм, связанные с различными структурами: канонические дифференциальные формы на пространствах модулей, L-функции абелевых поверхностей, производящие функции в топологии и теории струн и т.д.
В этом вводном докладе (планируется на 90 минут и рассчитан и на новых участников) будет дан обзор результатов, полученных в моей совместной работе с C. Poor и D. Yuen “Borcherds products everywhere” J. Number Theory 148 (2015), 164–195. Я опишу общие принципы нашего подхода к построению голоморфных произведений Борчердса в случае Зигелевых модулярных форм и сформулирую рабочие вопросы по данной теме. После доклада мы обсудим план работы семинара на этот семестр.

ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2017